EVIDENZA DI CIRCOLAZIONE DI METAPNUMOVIRUS AVIARE SOTTOTIPO C IN UN FISCHIONE (ANAS PENOLOPE) CAMPIONATO IN NORD ITALIA

Silveira F.¹, Lupini C.¹, Cecchinato M.², Franzo G.², Tucciarone C.M.², Mescolini G.¹, Felice V.¹, Martini M.², Terregino C.³, Catelli E.¹

¹ Dipartimento di Scienze Mediche Veterinarie, Alma Mater Studiorum - Università di Bologna, Via Tolara di Sopra, 50 - 40064 Ozzano dell'Emilia (BO) - Italia.
² Dipartimento di Medicina Animale, Produzioni e Salute, Università degli Studi di Padova Agripolis - Viale dell'Università, 16 - 35020 Legnaro (PD) - Italia.
³ Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, 35020, Legnaro (PD), Padova - Italia

Summary

Avian metapneumovirus (aMPV) is classified into 4 subtypes (A, B, C and D) and causes respiratory disorders in turkeys and chickens. In this work we report a detection of an aMPV subtype C (aMVP-C) in a wild bird sampled in Italy. Tracheal swabs were collected from 492 live wild birds sampled in Northeastern Italy. RNA was extracted and tested for the presence of aMPV through a one-step Real Time RT-PCR protocol able to detect and distinguish all known subtypes. From a young male Eurasian wigeon (*Anas penelope*) an aMPV strain of subtype C was detected. In order to characterize the detected strain, named aMPV/C/IT/Wigeon/758-53/07, the Matrix (M) gene was amplified and sequenced. Sequences were aligned with homologous aMPV subtype C sequences retrived from *GenBank*, and analyzed. The strain showed the highest similarity with an aMPV-C isolated from a Muscovy duck in France in 1998. This is the first report of aMPV from a wild bird sampled in Italy.

INTRODUZIONE

Il *Metapneumovirus aviare* (aMPV) è un virus RNA, appartenente alla famiglia *Paramyxoviridae*, sottofamiglia *Pneumovirinae*, che nel tacchino è l'agente eziologico della Rinotracheite del tacchino (TRT) e nel pollo causa forme respiratore che possono esitare nella Sindrome della testa gonfia (Cecchinato, 2016).

L'aMPV è classificato in 4 sottotipi (A, B, C e D) in base ai profili genetici e antigenici. Dalla sua prima segnalazione in Sudafrica nel 1978 (Buys *et al.*, 1989) aMPV si è diffuso in tutto il mondo ad esclusione dell'Oceania. In Italia, gli unici sottotipi evidenziati nel pollame domestico sono aMPV-A e aMPV-B, con quasi esclusiva prevalenza, negli ultimi anni, di quest'ultimo sottotipo.

Il sottotipo C è stato segnalato per la prima volta in tacchini in USA (Seal, 1998), quindi in anatre mute in Francia (Toquin *et al.*, 1999, Toquin *et al.*, 2006), in fagiani in Corea del sud (Lee *et al.*, 2007) ed in polli (Wei *et al.*, 2013) ed anatre mute (Sun *et al.*, 2014) in Cina.

aMPV sottotipo C è stato evidenziato anche in varie specie di uccelli selvatici in Nord America (Turpin *et al.*, 2008, Jardine *et al.*, 2018) ed Europa (Boheemen *et al.*, 2012) supportando l'ipotesi che gli uccelli selvatici possano giocare un ruolo come serbatoi di aMPV per il pollame (Cecchinato *et al.*, 2016).

Nel presente studio è riportato il riscontro, e l'analisi molecolare, di un ceppo di aMPV sottotipo C in un Fischione (*Anas penolope*) campionato in Nord Italia nel 2007.

MATERIALE E METODI

Campionamento

Sono stati analizzati 492 campioni ottenuti da uccelli selvatici appartenenti ai seguenti ordini: anseriformi (*Anas crecca*, n. 30; *Anas strepera*, n.13; *Anas acuta*, n.6; *Anas penelope*, n.80; *Anas platyrhynchos*, n. 84; *Anas querquedula*, n.18; *Anas clypeata*, n.13; *Aythya ferina*, n. 21), caradriformi (*Larus michahellis*, n. 96) e passeriformi (*Sylvia atricapilla*, n. 9; *Carduelis carduelis*, n. 1; *Parus major*, n. 15; *Fringilla coelebs*, n. 4; *Turdus merula*, n. 13; *Alcedo atthis*, n. 1; *Prunella modularis*, n. 8; *Erithacus rubecula*, n. 27; *Troglodytes troglodytes*, n. 1; *Turdus philomelos*, n. 36; *Turdus iliacus*, n. 2; *Cettia cetti*, n. 1; *Carduelis chloris*, n. 1; non identificati, n. 12), nell'ambito del programma di sorveglianza attiva nei riguardi dei virus dell'*influenza aviare* negli uccelli selvatici, eseguito dall'Istituto Zooprofilattico Sperimentale delle Venezie (IZS) nel periodo 2007-2010, nelle regioni Veneto, Lombardia ed Emilia-Romagna. I campioni erano costituiti da tamponi tracheali conservati a -80° C fino a processazione.

Estrazione del RNA, qRT-PCR e RT-PCR

I campioni sono stati processati inizialmente in pool da 5, a seconda dell'Ordine di appartenenza, successivamente, in caso di positività, è stato ripetuto l'esame in singolo.

I tamponi sono stati stemperati in PBS, quindi sottoposti ad estrazione di RNA virale secondo il metodo di Jing *et al.* (1993) che prevede l'utilizzo di Guanidina Tiocianato.

Ogni estratto era quindi testato mediante un protocollo di real-time RT-PCR (qRT-PCR) disegnato sul gene N (nucleocapside) in grado di identificare, distinguere e quantificare simultaneamente i sottotipi A, B, C e D (Lemaitre *et al.*, 2018). La reazione è stata eseguita, in doppio utilizzando il kit qRT-PCR SuperScript™ III Platinum™ SYBR™ Green One-Step (Invitrogen). In caso di positività per aMPV si è proceduto all'amplificazione del gene M secondo il protocollo di Seal (1998).

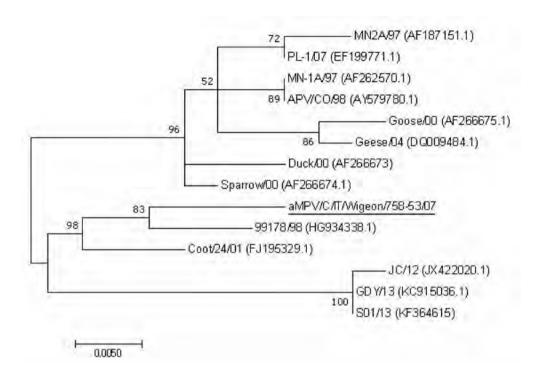
Sequenziamento e analisi filogenetica

Il gene M è stato sequenziato, in entrambe le direzioni, presso il centro di sequenziamento Macrogen Europe (Madrid). Le sequenze nucleotidiche sono state elaborate con il software Bioedit, allineate e confrontate, alle sequenze omologhe di ceppi aMPV-C presenti in *GenBank* utilizzando il software Clustal W. L'analisi filogenetica è stata realizzata utilizzando l'algoritmo Neighbor-Joining con il software MEGA7 (Tamura *et al.*, 2013). Sono stati considerati attendibili solo i nodi dell'albero filogenetico con valori di bootstrap pari o maggiori di 70, calcolati su 1000 replicati.

RISULTATI e DISCUSSIONI

Da un giovane Fischione (*Anas penelope*), maschio, campionato nel 2007 in Valle Chiusa, Parco Regionale del Delta del Po', Rovigo (Veneto), è stato evidenziato un ceppo di aMPV sottotipo C, denominato aMPV/C/IT/Wigeon/758-53/07. Si tratta

della prima segnalazione di circolazione di aMPV sottotipo C in un anatide selvatico svernante nel nostro paese, dove tra l'altro, il sottotipo C non è stato mai segnalato nel pollame domestico.


All'allineamento delle sequenze nucleotidiche (nt) ed amminoacidiche (aa) del gene M del ceppo aMPV/C/IT/Wigeon/758-53/07, con sequenze omologhe disponibili in *GenBank*, è stata evidenziata la maggiore similarità (98,2% nt; 94,8% aa) con il ceppo aMPV/C/FR/Muscovyduck/99178/98 isolato da Anatre mute in Francia, nel 1998 (Toquin *et al.*, 1999, Toquin et al., 2006) (Tabella 1 e Figura 1), rispetto ai ceppo aMPV-C isolati in USA da Tacchini (Seal, 1998) o in Corea da fagiano (Lee *et al.*, 2007).

Questo dato da un lato supporta la possibile specificità degli aMPV–C circolanti negli anatidi rispetto a quelli circolanti in altre specie, come già evidenziata da Brown *et al.* (2014); dall'altro, il dato è d'interesse epidemiologico e pone un allarme sul potenziale ruolo degli anatidi selvatici come serbatoi di aMPV-C aumentando il rischio d'introduzione nelle popolazioni di anatidi domestici come ci insegnano le dinamiche di diffusione dei virus influenzali. A conferma di queste ipotesi sarà necessario continuare l'indagine epidemiologica su aMPV-C nei selvatici, ampliarla al pollame domestico e rafforzare l'analisi molecolare sequenziando altri tratti del genoma del ceppo aMPV/C/IT/Wigeon/758-53/07.

Tabella 1: Percentuale di similarità nucleotidica (nt) e amminoacidica (aa) nel gene M tra il ceppo aMPV/C/IT/Wigeon/758-53/07 e le sequenze omologhe, con maggiore similarità, disponibili in *GenBank*.

Серро	Specie	Paese	Anno	Ac. Number	Gene M	
					nt	aa
99178/98	Anatra	Francia	1999	HG934338.1	98,2	94,8
Coot/24	Folaga	USA	2001	FJ195329.1	97,7	94,0
Sparrow	Passero	USA	2000	AF266674.1	97,0	92,3
PL-1	Fagiano	Sud Corea	2007	EF199771.1	96,5	89,8
Duck	Anatra	USA	2000	AF266673	96,5	89,9
APV/CO	Tacchino	USA	1997	AY579780.1	96,5	89,8
MN-1A	Tacchino	USA	1997	AF262570.1	96,5	89,8
Goose	Oca	USA	2000	AF266675.1	96,2	88,9
GDY	Anatra	Cina	2013	KC915036.1	96,2	88,8
S01	Anatra	Cina	2013	KF364615	96,2	88,8
Geese	Oca	USA	2004	DQ009484.1	96,0	88,9
MN2A	Tacchino	USA	1997	AF187151.1	96,0	88,2
JC	Pollo	Cina	2012	JX422020.1	96,0	88,0

nt=nucleotidi, aa=amminoacidi

Figura 1. Albero filogenetico relativo alle sequenze del gene M del ceppo aMPV/C/IT/Wigeon/758-53/07 e di aMPV sottotipo C presenti in *GenBank*.

BIBLIOGRAFIA

- 1. Brown PA, Lemaitre E, Briand FX, Courtillon C, Guionie O, Allée C, Toquin D, Bayon-Auboyer MH, Jestin V and Eterradossi N. (2014). Molecular Comparisons of Full Length Metapneumovirus (MPV) Genomes, Including Newly Determined French AMPV-C and –D Isolates, Further Supports Possible Subclassification within the MPV Genus. *PLoS ONE*, 9, e102740.
- 2. Buys SB, du Preez JH and Els HJ. (1989). The isolation and attenuation of a virus causing rhinotracheitis in turkeys in South Africa. *Onderstepoort J. Vet. Res.* 56, 87–98.
- 3. Cecchinato M, Ferreira HL, Munir M, *et al.* (2016). Avian Metapneumovirus. In: Mononegaviruses of Veterinary Importance: Molecular Epidemiology and Control. CAB International: Lancaster, UK, p:216.
- 4. Jardine CM, Parmley EJ, Buchanan T, Nituch L and Ojkic D. (2018). Avian metapneumovirus subtype C in Wild Waterfowl in Ontario, Canada. *Transbound. Emerg. Dis.* DOI: 10.1111/tbed.12832 (ahead of print).
- 5. Jing L, Cook JKA, David T, Brown K, Shaw K and Cavanagh D. (1993). Detection of turkey rhinotracheitis virus in turkeys using the polymerase chain reaction. *Avian Pathology*, 22, 771–783.

- 6. Lemaitre E, Allée C, Vabret A, Eterradossi N and Brown P. (2018). Single reaction, real time RT-PCR detection of all known avian and human metapneumoviruses. *J. Virol. Methods* 251, 61–68
- 7. Lee EH, Song MS, Shin JY, *et al.* (2007). Genetic characterization of avian metapneumovirus subtype C isolated from pheasants in a live bird market. *Virus Res.* 128, 18–25.
- 8. Tamura K, Stecher G, Peterson D, Filipski A and Kumar S. (2013). MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. *Mol. Biol. Evol.* 30, 2725–2729.
- 9. Toquin D, Bäyon-Auboyer MH, Eterradossi N, Jestin V and Morin H. (1999). Isolation of a pneumovirus from a Muscovy duck. *Vet. Rec.* 145, 680.
- 10. Toquin D, Guionie O, Jestin V, Zwingelstein F, Allee C. and Eterradossi N. (2006). European and American Subgroup C Isolates of Avian Metapneumovirus belong to Different Genetic Lineages. *Virus Genes*, 32, 97–103.
- 11. Turpin EA, Stallknecht DE, Slemons RD, Zsak L and Swayne DE. (2008). Evidence of avian metapneumovirus subtype C infection of wild birds in Georgia, South Carolina, Arkansas and Ohio, USA. *Avian Pathol.* 37, 343–351.
- 12. Seal BS. (1998). Matrix protein gene nucleotide and predicted amino acid sequence demonstrate that the first US avian pneumovirus isolate is distinct from European strains. -Virus Research, 58, 45–52.
- 13. Sun S, Chen F, Cao S, Liu J, Lei W, Li G, Song Y, Lu J, Liu C, Qin J. and Li H. (2014). Isolation and characterization of a subtype C avian metapneumovirus circulating in Muscovy ducks in China. *Veterinary Research*, 45, 74–74.
- 14. van Boheemen S, Bestebroer TM, Verhagen JH, Osterhaus ADME, Pas SD, Herfst S and Fouchier RAM. (2012). A Family-Wide RT-PCR Assay for Detection of Paramyxoviruses and Application to a Large-Scale Surveillance Study. *PLOS ONE*, 7, e34961.
- 15. Wei L, Zhu S, Yan X, Wang J, et al. (2013). Avian metapneumovirus subgroup C infection in chickens, China. Emerg. Infect. Dis. 19, 1092–1094.